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What is the Relevance
to Higher Ed?
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The Emergence of Al and ML as Decision Drivers
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How can we
make it happen?

VALUE

What will

happen? Prescriptive

Analytics

Predictive
Analytics

amazoncom
)

0N

What

Diagnostic

Analytics
Descriptive
Analytics
Hindsight Foresight
Gartner Analytics Value Escalator DIFFICULTY

www.gartner.com

7 ©2022 Proprietary and Confidential

LIAISON 3




Al and ML Create Better Outcomes for Students and Institutions

Post Graduate

Enroliment Student Success Success Advancgment
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Recruiting Retention Placement Fundraising
Admissions Persistence Managing Debt Volunteer
Financial Aid through Degree engagement

Returning Students

Predict Behavior and Prescribe Actions that Optimize Outcome
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Test Optional
International?
Stealth

Value
Outcomes
Resources

We Face Myriad of Challenges

Enrolled Students

Top of funnel contacts
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Top of the Funnel Disruption
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A customizable, cost-
effective advanced
analytics solution

to start building
relationships with the
best adults for your
institution
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Custom curation |dentify adults who
through have a high propensity

subpopulations to pursue additional
determined by you education

Intelligent

Names

Match your marketing Enhances CAS,

needs through TargetX, Othot
segmentation and Prescriptive Analytics,

consultations EMP Marketing




Intelligent Names: Targeting the Segments and Individual
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Client High Likelihood

: : Candidates for
Relationship Pool Client Institution

US Adult 1 Adult Learner
Population Candidates

(with Othot)

* Focused on Individualism - just because “you” look like someone doesn’t mean you
have the same academic ambitions

* Driven by “living analytics” - continuous updated as new data is available
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What if you could
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What happens next?

* School selects names
* They receive:
— Email addresses (20% - 50% fill)

— Mailing address for direct mail/loading into
social media platform

— Can work with L2 for social media campaigns
(will be additional cost)

— Cell phone number for text campaign (no
additional cost)

* Work with EMP to develop marketing campaigns
(case-by-case)
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Enroliment

v" A better shaped class that

amazon thrives at your institution

v A reduction in staff/student
time, effort, and cost

What You Need:

* Improved understanding of student behavior (through data)

* Personalization (what will have the biggest impact on which students, and when?)
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How It Works
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ML Is the Pathway to A Better Shape

Prediction Overview
Likelihood Score Distribution

Record Count 3,979
Number of Stud 2 3
umber of Students Historical 206
1,200 Descriptive Impact 10
1,000 Prescriptive Impact* 0
800
i Current 216

400

200
0% 50 %

Likelihood of Enroliment

100 %

Academic

Focus on

Individuals: Geography Diversity

Attributes
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Explainable Al Increases Trust and Usability

1,400 | o I

[l Increase | Decrease [ Total
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Identify The Individual Actions To Maximize Yield
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personalized
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ML Is The Pathway to Leverage
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%] University of
PlttSburgh School of Law

Using the platform, Pitt Law:
v"  Analyzed data by diversity

v' Targeted more competitive candidates

v' Expanded its prospect base

v" Focused on increasing LSAT scores
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TEXAS TECH

UNIVERSITY.

Challenges:

v/  Optimize marketing spend

<~ Find efficiencies in CRM
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Solutions:

* Used Othot platform predictions to understand factors
that drive enroliment

* Optimized marketing and recruiting efforts to identify
students most likely to enroll and increase recruiting
event attendance more than 30%

* Utilized CRM for tracking student lifecycle and
automating communications, triggers, etc.

* Exceeded goal by 322 students (9% growth in 3 years)

* Achieved opportunity to guide strategy for university
five-year plan




Centralized Application Model

* Meet centralized admissions
requirements while providing for unique
program needs, including;:

- Program-specific applicant questions
Supplemental document uploads
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Finding the Best Fit Students

CENTRALIZED
APPLICATION
SERVICE

CAS

Intelligent l o LIAISON .
nNZr:leeSn O t h@ ts" ‘

A LIAISON COMPANY
High Propensity to High Likelihood
Enroll in Graduate to Enroll at
Education Your School
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GMAC Liaison Hosted Events

Baltimore, MD

e ® 0 o

* Liaison Hosted Networking Dinner | June 14 at 06:30 p.m.
e Liaison Hosted Happy Hour | June 16 at 06:30 p.m.

Contact Robert Ruiz for more information if
you would like to attend

Robert Ruiz

Vice President, Strategic Enrollment

617-612-2087
rruiz@liaisonedu.com
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Join us to experience:

What’s Ahead in Higher Ed

Peer Perspectives
Trends & Trajectories

Ed Talks

Product Plans

. = ﬁh SEEEEEE da33y, . -
A .muuml o Pl Solution Training
Botspe T s
§ o e W RS, = " " .;u n‘ .ll #5fee s
e .,g- -ome ..- - g (_h" ”'.lllll Rl T

. -

o bh Bt wmr A

» - ...-n-n-l--'-"
- e en e - L4

“m m : _

y — - - P - “‘l 4‘ ‘

.g.gl - - "y N
!‘ Til ’

R T

L LR

it

experience:LIAISON 3.
BOSTON | JULY 28, 2022

liaisonedu.com/experienceliaison
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experience: LIAISON

2022-2023 Regional Event Series
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SEATTLE | FEBRUARY 2023 CHICAGO | MAY 2023
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ANAHEIM | JULY 2023 ATLANTA | NOVEMBER 2023
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Thank You
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Andy Hannah David Poole
President Research Di

othot
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